Szczegóły rekordu

Tytuł:Application of machine learning models and artificial intelligence to analyze annual financial statements to identify companies with unfair corporate culture
Autor:Wyrobek Joanna
Data wydania:02/10/2020
Obszar wiedzy:Modele wytwarzania i dystrybucji dóbr i usług publicznych
Słowa kluczowe:

Wydawca:Elsevier
Nazwa czasopisma:Procedia Computer Science
Abstrakt:

The purpose of the publication was to create a model that, based on the annual financial statements, identifies the risk of significant financial irregularities occurring in the enterprise. These irregularities may relate to different types of financial fraud that do not necessarily affect the annual financial statements. A characteristic feature of irregularities is that they are large-scale and will have a drastic impact on the company’s reputation. The results of the research show that machine learning and artificial intelligence algorithms were able to learn to recognize patterns of such scams and can detect them very effectively. An element of the novelty of the presented research is that it shows the possibility of training algorithms to recognize fraud based on information that is often not related directly to the observed fraudulent activities. The practical importance of research is the possibility of using the model in the decision-making process in the enterprise. The model allows assessing the risk that a potential business partner may commit financial fraud, which requires careful examination of the integrity of such an enterprise.

DOI:https://doi.org/10.1016/j.procs.2020.09.335
ISSN/ISBN:

Dodaj komentarz

/ Kontakt

BIURO PROJEKTU

Małopolska Szkoła Administracji Publicznej
Uniwersytet Ekonomiczny w Krakowie
ul. Rakowicka 16, p. 24, 31-510 Kraków
T: (12) 293 75 83
E: biurorid@uek.krakow.pl

Godziny pracy Biura Projektu:
poniedziałek – piątek 7:30-15:00

PROMOCJA ORAZ UPOWSZECHNIANIE

Wojciech Sypek
Małopolska Szkoła Administracji Publicznej
Uniwersytet Ekonomiczny w Krakowie
ul. Rakowicka 16 | pok. 22
E: sypekw@uek.krakow.pl
T: 12 293 75 67 | K: +48 537 637 807

logo MNiSW
logo UEK
logo smap