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Abstract 

The work deals with the reconfiguration of computer system, which was designed to provide services from a strictly defined set. 
We assume that the system is fully usable, as long as each randomly appearing request to perform any service from this set will 
be handled. When such a request occurs, the technical resources required for its fulfillment must be allocated to the service. In 
the general case, the same technical resources can be dedicated to perform various services at different moments of time. 
Therefore, it is advisable to introduce abstract resources, so-called functional ones, representing particular types of actual 
technical resources. Functional resources mediate in linking the services and technical resources required to perform them. One 
functional resource can be associated with only one service, whereas it can be performed by various technical resources. Each set 
of pairs <service, functional resource>, constituting a subset of the full set of such pairs, determined at the design stage of the 
system, creates the so-called the system's functional structure. In the case of damage of technical resource, it cannot be ruled out 
that it is impossible to maintain full usability of the system, i.e. to create a complete usable structure. However, as a rule, it will 
be possible to create more than one of its substructures, each of them provides support for service requests from a subset of the 
established set of services. If it is permissible to provide services to a limited extent for established subsets of services and for 
each of them a loss function resulting from the inability to provide a given service was specified, the system should be 
reconfigured (using available technical resources) so as to create a usable structure, at which  potential losses will be the 
smallest.. 
The results of previous works are as follows: 

• an algorithm for interactive fixing acceptable substructures by a user, reducing to the necessary minimum the number 
of required indications of service subsets (n services is 2n possible subsets). Indeed, the choice comes down to establish 
vectors of minimal reliability functions. That algorithm has been implemented, 
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• a general algorithm for determining optimal functional substructures at a given state of fitness of the system. It can be 
the basis for the design of the layer for controlling automated system reconfiguration. 

The presented approach allows to reduce losses in the case of a lack of full possibilities of supplying services by the system. The 
proposed method, after some extensions, can be applied to reconfigure non-computer systems, e.g. the state security system. 
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1. Introduction 

From the user’s point of view, the computer system is perceived as an object intended to provide specific services 
[1], [2], for the implementation of which it was designed. For the systems considered in the paper, the full set of 
services is strictly determined. By default, service requests will flow into the system randomly during its operation. 
For the current performance of each service, it is necessary to allocate appropriate technical resources. As a rule, 
such allocation may be made in many different ways. For the user, it is not significant which technical resources will 
be utilized for a given service. It is important, however, that it was done to the extent that fully satisfies the user. 
Thus, it can be assumed that the technical resources are perceived by the user as virtual elements of the computer 
system, capable of performing the assigned operations in the frame of the services. The technical resources seen in 
such a way will be further referred to as functional resources. Talking about a functional resource, we abstract from 
its physical form. Indeed it is obvious that every functional resource should have its technical representation. 

At the design stage of the computer system, it is necessary to decide on the basis of which technical resources 
will be performed the services predicted for implementation in the system. It is convenient to make such decisions in 
two stages. In the first one, functional resources necessary for the implementation of each service should be 
specified. In the second stage, after selecting the technical resources, the links between functional resources and 
appropriate technical resources should be defined. It is not difficult to notice that in the general case there may be 
many variants of such links. As a result, the possible technologies of service implementation considered by the 
designer determine for each service reasonable subsets of functional resources ensuring its performance. In this way, 
a set of potential, proposed usable structures of the system is established. The usable structure constitutes a set of 
services with functional resources linked to each of them. At the stage of technical feasibility study, one of these 
potential usable structures [3] is generally selected for further design work, considered the best in the sense of the 
adopted selection criterion, determined by the possibilities of technical implementation of the system. They may 
result, for example, from the current financial condition of the system contractor, IT competences of future users or 
the availability of technical resources necessary to implement the system. The usable structure is a convenient initial 
concept for formulating the system’s performance properties, because such a structure constitutes the link between 
the future user of the designed system and its designer. The user, without going into technical details, can specify 
potential usable structures. The task of the designer is then to find the answer to the question whether the proposed 
usable structures can be implemented with a fixed set of technical resources or not. 

2. Problem description 

If in a given situation (environmental conditions, physical state of system resources) the system is able to provide 
any service from the full set of services to be performed, then the user should declare the system's usability. In this 
case, there is often talk of the so-called full system usability. Often, however, even if it is possible to provide only a 
subset of these services, the user may considered the system as usable (partial system usability [4],[5]). Therefore in 
some emergency situations it is allowed to operate the system in a limited scope, but still satisfying the user. 

The system's ability to perform subsets of services is determined, in fact, by its physical condition and thus, in 
our interpretation, its possible usable structure. For each subset of services that the system can perform (and thus for 
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• a general algorithm for determining optimal functional substructures at a given state of fitness of the system. It can be 
the basis for the design of the layer for controlling automated system reconfiguration. 

The presented approach allows to reduce losses in the case of a lack of full possibilities of supplying services by the system. The 
proposed method, after some extensions, can be applied to reconfigure non-computer systems, e.g. the state security system. 
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each usable structure), the user should be able to decide whether to consider the system usable or not. There must 
therefore be a binary function which assigns bivalent user decisions to each subset of services to be performed (1 - 
system still useable, 0 - system not useable), hereinafter referred to as the function of usability, denoted by  . 
Applying it, a set of acceptable, but only from the user's point of view, system usable structures will be created. 

When considering the reliability of any object, in the general case, the following three factors should be 
considered: services that the object will be able to perform, its predicted physical states, and external conditions 
during the performance of services. If the object is treated as a system, it is necessary to introduce the so-called 
generalized structural reliability function (let us denote it by f ), whose arguments correspond to the three factors 
mentioned above. The values of f  determine the distinguished reliability states of the entire system. In practice, it 
is assumed that the physical states of system elements are represented by their reliability states, while the external 
conditions are divided into a small quantity of numbered normative areas. The set of potential services is finite and 
strictly defined (only such are taken into account in this work). The formal arguments of the considered function 

( ), ,f L Y Z  may be expressed in the following form: 

 1 11l ,...,l ,...,l , ,..., ,..., , z ,...,z ,...,zy y yi I n N  = L Y   (1) 

where: l 1i =  means that the service numbered by i belongs to the current subset of services to be performed, 
l 0i =  – that it does not belong, yn denotes the reliability state of the nth element of the system (technical resource); 
it is assumed that the elements are divalent in the sense of reliability, i.e.  y 0,1n  wherein y 1n =  means that the 
nth element is useable and y 0n = , that damaged, z  means the number of the th  distinguished normative area of 
external operating conditions of the system. 

It is assumed that the system is bivalent in the sense of reliability, i.e. the function f  takes its values from the set 
 0,1 , wherein the value 1 means the system's usability, and the value 0 the opposite state. It may be noticed that the 
generalized structural reliability function f  can be used to determine a set of acceptable usable structures, because 
it associates through its arguments, the user's requirements for usability (appropriate L vectors) with the possibility 
of providing it under given conditions and the physical state of the system (arguments , Y). However, it may be 
assumed that the system will be designed for a fixed nominal area of external conditions (for the given value of 
z ). So practically the function f will come down to the partial function of only two arguments (L and Y), 
which will slightly simplify the problem of its identification. To reduce the number of symbols used, we also denote 
this partial function using the symbol f , i.e.: 

( ) ( ) ( )z, ,z , ,f f f= =L Y L Y L Y    (2) 

where the value “z” indicates the established nominal area of the external conditions. Therefore, for further 
considerations it was assumed that the generalized structural reliability function is a binary function ( ),f L Y , where 
L and Y are binary vectors. It is convenient to assume that f  is a Boolean function, because it will allow to use 
known methods of studying such functions [6],[7],[8]. 

As already mentioned, the change in the reliability status of technical resources usually leads to a change in the 
system's usable properties, which in turn necessitates the selection of a new usable structure. This should be the best 
structure in the sense of a fixed quality measure, feasible with changed reliability of technical resources. It is the 
user's responsibility to define this quality measure in detail. 

It can be seen that for each subset of services that can be performed, described by the L vector, there is exactly 
one usable structure being a substructure of the complete usable structure. Thus, the vector L uniquely identifies the 
corresponding usable structure. In view of the above, and assuming that there is no technical impact of the usable 
structure implementation on the quality of the system performance, the objective function within the problem of 
choosing the optimal usable structure (lets denote it W) will  specify the expected losses for any L vector. It may be 
noted that the expected losses will be, generally speaking, inversely proportional to the number of services possible 
to perform with the usable structure determined by the L vector. If  denotes the set of all L vectors and the symbol 
≺ means the corresponding dyadic preceding relation in , then formally this feature of the proposed objective 
function can be expressed as follows: 
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( ) ( )1 2 1 2 1 2, : W W   L L L L L L    (3) 

wherein 1 2L L  when the subset of services described by the L1 vector is included in the subset of services 
described by the L2 vector (the relation ≺ will be described in detail later in the paper). This property of the W 
function causes that the area of searching for the optimal structure can be significantly narrowed. Thus it is 
sufficient to consider only those of the acceptable usable structures that are not substructures of any other admissible 
usable structure. 

3. Formulation of the research task 

The research task presented in this work comes down to developing a method for the designer to choose the best 
usable structures for all possible reliability states of the technical resources of the system. This task can be 
accomplished in the three stages: stage 1 - developing a method for the user to determine acceptable usable 
structures (the identification of function  ); stage 2 - elaborating a method for determining the generalized 
structural reliability function (the identification of function f ); stage 3- developing a method for selecting the best 
usable structure in the sense of the objective function W. Usable structures determined in such a way will form the 
basis for the development of the so-called table of automatic system reconfiguration, assigning each system 
reliability state to the best usable structure to be used at this state. 

4. Results obtained 

4.1. The method of the identification of function φ 

As a rule determining (identifying) this function is  not a simple task because in relation to the set of I services 
one should ask the user 2I questions (there are so many possible subsets). With the increase of I the number of these 
questions increases rapidly (exponentially) so determining the function   becomes practically unreal. Therefore it 
has become necessary to elaborate a conversational method that minimizes the number of user inquiries and 
responses to identify the   function. Formally, this function can be described as follows: 

( )
1

:
0

theuser considers the system useable
theuser considers the system not useable

−   =  −
L L   (4) 

Thus the function   defines the whole set of usability states of the system. The essence of function   follows 
that it is a non-decreasing monotonic function [9]. Meanwhile, if the user considers the system to be useable for the 
ability to perform a certain subset of services, then, if it is possible to perform the superset of this subset, it should 
also be consider useable. Furthermore, let us note that the function   is a coherent one [4]. Determining the states 
of usability can be reduced to the task of determining the minimum vectors of function  . It should be noticed that 
the developed method is essentially different from the methods known in the literature for determining the minimum 
vectors of monotonic Boolean functions determined algebraically using Boolean formulas, e.g. formulas minimizing 
[6],[7],[8]. Before moving on to further considerations, it is necessary to define the relationship , which was 
mentioned in chapter 2.3. 

Let  0,1=  mean the set of Boolean values (false and true, respectively),  still denotes the set of all I 
dimensional Boolean vectors L, defining subsets of services, and let the relation    be the relation 

( ) ( ) ( ) 0,0 , 0,1 , 1,1=    (5) 

Then the relations    will be the relation determined as follows: 

   , : 1 : l ls ss I           L L L L    (6) 
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( ) ( )1 2 1 2 1 2, : W W   L L L L L L    (3) 

wherein 1 2L L  when the subset of services described by the L1 vector is included in the subset of services 
described by the L2 vector (the relation ≺ will be described in detail later in the paper). This property of the W 
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usable structure. 
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responses to identify the   function. Formally, this function can be described as follows: 

( )
1
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0

theuser considers the system useable
theuser considers the system not useable

−   =  −
L L   (4) 
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where 1l ,...,l ,...,li I   =L , 1l ,...,l ,...,li I   =L . The vector L  is called the predecessor of the vector L , and the 
vector L  - the successor of the vector L . The interval [ , ] L L  specified in the space  is the set of these vectors 
L that are simultaneously the successors of the vector L  and the predecessors of the vector L . It should be noted 
here that both  L L , and  L L . The function   is a monotonic non-decreasing Boolean function if and only if 
for each ordered pair of vectors ' '', L L  the following implication is true: 

  ( ) ( )       L L L L    (7) 

As the minimum vector of the function   we will call any such vector L , for which ( ) 1 =L , and for all 
predecessors of this vector different from L the value of the function   is equal to 0. If the set of minimum vectors 
we denote by min , then the formal record of the minimum vector of   function is as follows: 

  ( )( ) ( ) ( )  ( )( ) min 1 : 0p p p p   =        =  L L L L L L L L   (8) 

Let the vectors 1 1, , a ,...,a ,...,a , b ,...,b ,...,bi I i I = =a b a b  denote, respectively, the lower and upper 
boundaries of any interval specified in space , and the vectors 1 1, , 1 ,...,1 ,...,1 , 0 ,...,0 ,...,0i I i I = =1 0 1 0  
mean, respectively, a vector representing the full set of services of the designed system and a vector representing 
empty set. Each interval [ , ]a b  in space , can be clearly defined by the appropriate characteristic function   
[4],[10] which can be written as follows: 

( ) ( )
1 0

,
1,

l l ,
I

i i i i

when
when 

=  = =     
a b

a 0 b 1
L

a 0 b 1
   (9) 

where: li - Boolean variables (the components of the vector of Boolean variables L), a ,bi i  - Boolean constants 
(the components of vectors a and b),  1 : a b 1i ii=  = = ,  0 : a b 0i ii=  = = ( )  1 0 1,..., ,...,i I=   . 
Using the characteristic function of the interval (9) one can determine whether a given vector belongs to the interval 
or not. Let’s note that the set of vectors for which the non-decreasing Boolean function  takes the value 1 is covered 
by (inseparable) intervals, whose lower boundaries are the minimum vectors of this function and the upper end of 
each of these intervals is vector 1 (in this case of the number of components equal to I). Hereinafter these intervals 
will be called intervals generated by minimum vectors. This means that when identifying the function   the 
consideration of space  can be carried out sequentially eliminating entire intervals in which the function   takes 
the value of 1. 

The entire space of the vectors of the states of usability (and not usability) , determined by the interval [ , ]a b  
can be dichotomously divided into two intervals 1[ , ]0 b  and 1[ , ]a 1 , where 1 11 ,...,1 ,...,0i I=b  while 

1 10 ,...,0 ,...,1i I=a . By dividing in an analogous way each of the intervals obtained in the next steps, after I-1 steps 
we get a binary tree [1],[2],[11], whose vertices are intervals of the form [ , ]n

k ka b , where: k is the step number (the 
level of binary tree), 0, 1k I= − ; n denotes the interval number for kth level, 1,2kn = . The general rule for 
determining the intervals for the kth level of the tree on the basis of each of the intervals obtained at the 1k −  level 
( )1 1[ , ]k k− −a b  at 0k  , is as follows: 

• In the vector 1k−b  we insert the value of the component 0 at the position numbered k, obtaining the vector kb  
(upper boundary of the first interval). 

• In the vector 1k−a  we insert the value of the component 1 at the position numbered k, obtaining the vector ka  
(lover boundary of the second interval). 

• By replacing the upper boundary of the interval 1 1[ , ]k k− −a b  by the determined vector kb we obtain the first 
interval '[ , ]k ka b , wherein 1k k−=a a . 

• By replacing the lower boundary of the interval 1 1[ , ]k k− −a b  by the determined vector ka we obtain the second 
interval ''[ , ]k ka b , wherein 1k k−=b b . 
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Determining the minimum vectors of the function   comes down to searching for these vectors within the 
intervals of thus formed binary tree. Using the properties of the non-decreasing Boolean monotonic function (7) and 
the characteristic function of the interval (9) it can be stated that: 

( ) ( )    ( ) 
( ) ( )    ( ) 

0 , : 0
1 , : 1

 =     =
 =     =

a b b L a b L
a b a L a b L

   (10) 

It follows from the above that to identify the function   it is not necessary to consider all determined intervals. If 
the value of the function   is equal to 0 for the upper end of the interval, then there is no need to consider this 
interval. This corresponds to removing the whole subspace of vectors from the considerations (the subtree, whose 
node is the interval [ , ]a b ). Similarly, we remove a vector subspace if for the lower boundary of the interval   is 
equal to 1. This allows us to minimize the number of necessary inquiries about the system's usability. 

To search the binary tree discussed in the paper, the so-called pre-order strategy was applied [1],[11]. There still 
remains the problem of establishing minimum vectors in the currently considered interval [ , ]a b . Remembering that 
this interval is the vertice of the previously formed binary tree and based on (10), it may be noted that the sub-trees 
of this vertice should be considered only when ( ) 0 =a  and ( ) 1 =b . Therefore, the minimum vector of the 
function   in the considered interval can be only one of its boundaries. 

The upper boundary b of the considered interval [ , ]a b  is the minimum vector of the function   if it does not 
belong to any of the subsets generated by already established minimum vectors, and this is the only vector from this 
interval at which the user considers the system useable. The lower boundary a of the considered interval [ , ]a b  is the 
minimum vector of the function   if it does not belong to any of the subsets generated by already established 
minimum vectors and the user considers the system to be useable for this vector. The function φ identified on the 
basis of the user's answer can be visualized (in a reasonable dimension) in the form of a binary cube [12]. 

4.2. The method of determining optimal usable substructures for a given system usability condition 

The system designer setting the function f  for the system being designed (the values ( ),f L Y ) must know, on 
the one hand, the values of the function ( ) L , set by the user, and on the other hand the possibility (or inability) 
specified in the project to provide a subset of services specified by L for given vector Y of reliability states of 
technical resources of the system. If ( ) 1 =L  and there is a possibility to ensure performing the subset of tasks 
determined by L (with the configuration chosen for Y – such configurations for a given Y may, in the general case, 
be numerous), then the designer should determine that ( ), 1f =L Y . In other cases ( ), 0f =L Y . Therefore, in order 
to determine the value of ( ),f L Y , the designer, in addition to the function   must, theoretically, have binary 
feasibility functions of the subsets of tasks [13] set for all possible vectors Y, defined as follows: 

  ( )

1 ,

: 0,1 , ,

0

when with the reliability states the elements of the
system specyfied by the vector there is the possibility
of performing a subset of tasks specified by the vector
otherwise


→  = 



Y Y
Y

Y L
L

g g  (11) 

where  i  are the sets of all L and Y vectors, respectively. In view of the above it can be seen that 
( ) ( ) ( ),f =   YL Y L Lg . Let: 

     1 1 1,..., ,..., , ,..., ,..., , ,..., ,...,j J n N s Szf zf zf zt zt zt z z z= = = g g g   (12) 

means, respectively, a set of required functional resources, a set of technical resources (determined by the 
designer) and a set of technical resource groups, i.e. a set of all these subsets of technical resources ( sz g ), 
which the designer has deemed appropriate to implement the determined functional resources. In the general case, 
such subsets are not disjoint. Therefore, if we assume that each technical resource nzt  can be simultaneously 
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As the minimum vector of the function   we will call any such vector L , for which ( ) 1 =L , and for all 
predecessors of this vector different from L the value of the function   is equal to 0. If the set of minimum vectors 
we denote by min , then the formal record of the minimum vector of   function is as follows: 
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Let the vectors 1 1, , a ,...,a ,...,a , b ,...,b ,...,bi I i I = =a b a b  denote, respectively, the lower and upper 
boundaries of any interval specified in space , and the vectors 1 1, , 1 ,...,1 ,...,1 , 0 ,...,0 ,...,0i I i I = =1 0 1 0  
mean, respectively, a vector representing the full set of services of the designed system and a vector representing 
empty set. Each interval [ , ]a b  in space , can be clearly defined by the appropriate characteristic function   
[4],[10] which can be written as follows: 
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1 0
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1,

l l ,
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i i i i
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when 
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where: li - Boolean variables (the components of the vector of Boolean variables L), a ,bi i  - Boolean constants 
(the components of vectors a and b),  1 : a b 1i ii=  = = ,  0 : a b 0i ii=  = = ( )  1 0 1,..., ,...,i I=   . 
Using the characteristic function of the interval (9) one can determine whether a given vector belongs to the interval 
or not. Let’s note that the set of vectors for which the non-decreasing Boolean function  takes the value 1 is covered 
by (inseparable) intervals, whose lower boundaries are the minimum vectors of this function and the upper end of 
each of these intervals is vector 1 (in this case of the number of components equal to I). Hereinafter these intervals 
will be called intervals generated by minimum vectors. This means that when identifying the function   the 
consideration of space  can be carried out sequentially eliminating entire intervals in which the function   takes 
the value of 1. 

The entire space of the vectors of the states of usability (and not usability) , determined by the interval [ , ]a b  
can be dichotomously divided into two intervals 1[ , ]0 b  and 1[ , ]a 1 , where 1 11 ,...,1 ,...,0i I=b  while 

1 10 ,...,0 ,...,1i I=a . By dividing in an analogous way each of the intervals obtained in the next steps, after I-1 steps 
we get a binary tree [1],[2],[11], whose vertices are intervals of the form [ , ]n

k ka b , where: k is the step number (the 
level of binary tree), 0, 1k I= − ; n denotes the interval number for kth level, 1,2kn = . The general rule for 
determining the intervals for the kth level of the tree on the basis of each of the intervals obtained at the 1k −  level 
( )1 1[ , ]k k− −a b  at 0k  , is as follows: 

• In the vector 1k−b  we insert the value of the component 0 at the position numbered k, obtaining the vector kb  
(upper boundary of the first interval). 

• In the vector 1k−a  we insert the value of the component 1 at the position numbered k, obtaining the vector ka  
(lover boundary of the second interval). 

• By replacing the upper boundary of the interval 1 1[ , ]k k− −a b  by the determined vector kb we obtain the first 
interval '[ , ]k ka b , wherein 1k k−=a a . 

• By replacing the lower boundary of the interval 1 1[ , ]k k− −a b  by the determined vector ka we obtain the second 
interval ''[ , ]k ka b , wherein 1k k−=b b . 
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Determining the minimum vectors of the function   comes down to searching for these vectors within the 
intervals of thus formed binary tree. Using the properties of the non-decreasing Boolean monotonic function (7) and 
the characteristic function of the interval (9) it can be stated that: 
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It follows from the above that to identify the function   it is not necessary to consider all determined intervals. If 
the value of the function   is equal to 0 for the upper end of the interval, then there is no need to consider this 
interval. This corresponds to removing the whole subspace of vectors from the considerations (the subtree, whose 
node is the interval [ , ]a b ). Similarly, we remove a vector subspace if for the lower boundary of the interval   is 
equal to 1. This allows us to minimize the number of necessary inquiries about the system's usability. 

To search the binary tree discussed in the paper, the so-called pre-order strategy was applied [1],[11]. There still 
remains the problem of establishing minimum vectors in the currently considered interval [ , ]a b . Remembering that 
this interval is the vertice of the previously formed binary tree and based on (10), it may be noted that the sub-trees 
of this vertice should be considered only when ( ) 0 =a  and ( ) 1 =b . Therefore, the minimum vector of the 
function   in the considered interval can be only one of its boundaries. 

The upper boundary b of the considered interval [ , ]a b  is the minimum vector of the function   if it does not 
belong to any of the subsets generated by already established minimum vectors, and this is the only vector from this 
interval at which the user considers the system useable. The lower boundary a of the considered interval [ , ]a b  is the 
minimum vector of the function   if it does not belong to any of the subsets generated by already established 
minimum vectors and the user considers the system to be useable for this vector. The function φ identified on the 
basis of the user's answer can be visualized (in a reasonable dimension) in the form of a binary cube [12]. 

4.2. The method of determining optimal usable substructures for a given system usability condition 

The system designer setting the function f  for the system being designed (the values ( ),f L Y ) must know, on 
the one hand, the values of the function ( ) L , set by the user, and on the other hand the possibility (or inability) 
specified in the project to provide a subset of services specified by L for given vector Y of reliability states of 
technical resources of the system. If ( ) 1 =L  and there is a possibility to ensure performing the subset of tasks 
determined by L (with the configuration chosen for Y – such configurations for a given Y may, in the general case, 
be numerous), then the designer should determine that ( ), 1f =L Y . In other cases ( ), 0f =L Y . Therefore, in order 
to determine the value of ( ),f L Y , the designer, in addition to the function   must, theoretically, have binary 
feasibility functions of the subsets of tasks [13] set for all possible vectors Y, defined as follows: 
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otherwise
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where  i  are the sets of all L and Y vectors, respectively. In view of the above it can be seen that 
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means, respectively, a set of required functional resources, a set of technical resources (determined by the 
designer) and a set of technical resource groups, i.e. a set of all these subsets of technical resources ( sz g ), 
which the designer has deemed appropriate to implement the determined functional resources. In the general case, 
such subsets are not disjoint. Therefore, if we assume that each technical resource nzt  can be simultaneously 
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allocated to the implementation of only one functional resource, then after choosing any group of technical 
resources, which element is nzt , for the implementation of this functional resource, no other group of technical 
resources whose element is nzt  can no longer be used to implement any other functional resource. Connections of 
functional resources with possible groups of technical resources, ensuring their disjunctive implementation, it is 
convenient to present in the form of a graph: 

, ,GT PT=    (13) 

where:  – set of graph vertices, =  ;  – set of graph edges, =   wherein 
  ,   ; PT – a ternary relationship meeting the following conditions: 

Yg
  ( ) ( ) ( ) ( )  

) , : , ,
) , , , :

, , , ,

a u x y x y u PT
b u x y z v

x y u PT v z u PT x v y z x z y v

    
   

    =  =  =  =
  (14) 

Graph GT will be referred to as the graph of full technical capabilities of functional resources implementation. 
The edge connecting two groups of technical resources means that both groups have at least one common element 
(but it is not a group of identical technical resources). The lack of edges between groups means separation of these 
groups. The graph of the full technical capabilities of implementing functional resources GT will be used to 
determine the value of ( )Y Lg  function with the determined reliability status of technical resources described by the 
vector L. Let's denote by L  the set of functional resources necessary to perform the services described by the 
vector L, L . Let Y  be the set of those groups of technical resources for which all their elements 
are useable with this Y vector. Thus, with the current state of technical resources, each group z  Yg  consists 
only of those technical resources for which the corresponding component in the vector Y is of value 1. If we now 
remove from the GT graph all vertices that do not belong either to the subset L  or to the subset Y  then we 
will obtain the GT L

Y  graph (GT subgraph), which will determine the possibilities of technical feasibility of 
functional resources necessary to carry out the tasks described by the vector L, with a fixed state of technical 
resources, described by the vector Y. To determine the function ( )Y Lg  it is sufficient to determine the most 
numerous association of the graph GT L

Y . With the user-defined function   determining the value of the function 
Yg  for each of the Y vectors is equivalent to determining the function f.  
From the essence of the function Yg  (11) it follows that it is a non-growing monotonic binary (Boolean) function 

and is a coherent one. Thus the function Yg  can be uniquely determined by the set of its maximum vectors. To 
determine the maximum vectors of the Yg  function the identification method of the function  , can be successfully 
used, after its appropriate modification. To this end, let us introduce several symbols and dependencies. As the 
negated vector of the vector L (1) we call the vector 1l ,..., l ,..., li I=L  where the sign  means Boolean negation. 
The following relationships can be proved to be true: 

1. For each pair of vectors ,i j L L  the relationship [ ] [ ]i j j iL L L L  is true. 
2. Let the Boolean function  : 0,1→g  be a non-growing monotonic function. Then the function  : 0,1 →g , 

whose values are determined by the equality ( ) ( ) L Lg = g  is a non-decreasing monotonic function. 
3. Let g  denote a non-growing monotonic Boolean function, and the function g  defined by the equation 

( ) ( ) =L Lg g  will be, by relationship 2, a Boolean non-decreasing monotonic function. Then the negated 
minimum vectors of the non-decreasing monotonic Boolean function g  are the maximum vectors of the non-
growing monotonic Boolean function g . 

4. Each maximum vector of the function ( ) ( ),f f YL Y L  is the maximum vector of the function ( )Y Lg , i.e. 
max max
f  Y YL L g . 

Therefore, based on the relationships 2 and 3 as well as using the method of determining the minimum vectors of 
the function  , we can determine the maximum vectors for each considered function ( )Y Lg . Based on the 
relationship 4, it can be observed that the set of maximum vectors ( )fY L  is a subset of the set of maximum vectors 
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of the function ( )Y Lg , for which ( ) 1 =L . This subset is a set of admissible solutions Y  (permissible usable 
structures) with the reliability state of the technical resources of the system described by the Y vector. Therefore, it 
is enough to select from the set Y  such a vector L  (e.g. using the genetic algorithm [14]) for which the objective 
function W adopts the smallest value. It should be added that the above operations will be carried out without the 
intervention of the designer, because the answers to questions about the usability of the system will be generated 
automatically (presentation of the algorithm for checking the possibility of implementing a subset of tasks based on 
the GT L

Y  graph exceeds the scope of this work). Particular GT L
Y  graphs will also be created automatically based on 

the specified, for each functional resource, possible groups of technical resources, ensuring its disjunctive 
implementation. 

5. Conclusions 

The method presented in this paper allows to determine, at the design stage, such computer system configurations 
that will ensure the best, from the user's point of view, system performance in the event of failure of its technical 
resources. By assigning the best system configuration to each distinguished emergency situation, obtainable at a 
given state of technical resources, we get an automatic reconfiguration table (we abstract here from its physical 
implementation), based on which a properly programmed mechanism will auto-reconfigure the system. The 
development of such a table at the design stage of the system reduces the time of elaboration a new system 
configuration during its operation, almost to zero. This is particularly important in highly time-dependent systems 
where the response time to emergencies can have a decisive impact on the further usability of the system. 

The proposed method, according to the authors’ opinion, can be applied not only in relation to computer systems. 
It can be used to solve a number of problems from the class, let's call it, “tasks-resources” where specific resources 
are required to perform tasks, and which of these tasks can be performed depends on whether and which resources 
will be allocated. For example, this may be the issue of selecting projects for their portfolio. It can also be a matter 
of building a state security system, but as an objective function certainly it will be necessary to take into account the 
costs of performing system reconfiguration. 
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allocated to the implementation of only one functional resource, then after choosing any group of technical 
resources, which element is nzt , for the implementation of this functional resource, no other group of technical 
resources whose element is nzt  can no longer be used to implement any other functional resource. Connections of 
functional resources with possible groups of technical resources, ensuring their disjunctive implementation, it is 
convenient to present in the form of a graph: 

, ,GT PT=    (13) 

where:  – set of graph vertices, =  ;  – set of graph edges, =   wherein 
  ,   ; PT – a ternary relationship meeting the following conditions: 
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Graph GT will be referred to as the graph of full technical capabilities of functional resources implementation. 
The edge connecting two groups of technical resources means that both groups have at least one common element 
(but it is not a group of identical technical resources). The lack of edges between groups means separation of these 
groups. The graph of the full technical capabilities of implementing functional resources GT will be used to 
determine the value of ( )Y Lg  function with the determined reliability status of technical resources described by the 
vector L. Let's denote by L  the set of functional resources necessary to perform the services described by the 
vector L, L . Let Y  be the set of those groups of technical resources for which all their elements 
are useable with this Y vector. Thus, with the current state of technical resources, each group z  Yg  consists 
only of those technical resources for which the corresponding component in the vector Y is of value 1. If we now 
remove from the GT graph all vertices that do not belong either to the subset L  or to the subset Y  then we 
will obtain the GT L

Y  graph (GT subgraph), which will determine the possibilities of technical feasibility of 
functional resources necessary to carry out the tasks described by the vector L, with a fixed state of technical 
resources, described by the vector Y. To determine the function ( )Y Lg  it is sufficient to determine the most 
numerous association of the graph GT L

Y . With the user-defined function   determining the value of the function 
Yg  for each of the Y vectors is equivalent to determining the function f.  
From the essence of the function Yg  (11) it follows that it is a non-growing monotonic binary (Boolean) function 

and is a coherent one. Thus the function Yg  can be uniquely determined by the set of its maximum vectors. To 
determine the maximum vectors of the Yg  function the identification method of the function  , can be successfully 
used, after its appropriate modification. To this end, let us introduce several symbols and dependencies. As the 
negated vector of the vector L (1) we call the vector 1l ,..., l ,..., li I=L  where the sign  means Boolean negation. 
The following relationships can be proved to be true: 

1. For each pair of vectors ,i j L L  the relationship [ ] [ ]i j j iL L L L  is true. 
2. Let the Boolean function  : 0,1→g  be a non-growing monotonic function. Then the function  : 0,1 →g , 

whose values are determined by the equality ( ) ( ) L Lg = g  is a non-decreasing monotonic function. 
3. Let g  denote a non-growing monotonic Boolean function, and the function g  defined by the equation 

( ) ( ) =L Lg g  will be, by relationship 2, a Boolean non-decreasing monotonic function. Then the negated 
minimum vectors of the non-decreasing monotonic Boolean function g  are the maximum vectors of the non-
growing monotonic Boolean function g . 

4. Each maximum vector of the function ( ) ( ),f f YL Y L  is the maximum vector of the function ( )Y Lg , i.e. 
max max
f  Y YL L g . 

Therefore, based on the relationships 2 and 3 as well as using the method of determining the minimum vectors of 
the function  , we can determine the maximum vectors for each considered function ( )Y Lg . Based on the 
relationship 4, it can be observed that the set of maximum vectors ( )fY L  is a subset of the set of maximum vectors 
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of the function ( )Y Lg , for which ( ) 1 =L . This subset is a set of admissible solutions Y  (permissible usable 
structures) with the reliability state of the technical resources of the system described by the Y vector. Therefore, it 
is enough to select from the set Y  such a vector L  (e.g. using the genetic algorithm [14]) for which the objective 
function W adopts the smallest value. It should be added that the above operations will be carried out without the 
intervention of the designer, because the answers to questions about the usability of the system will be generated 
automatically (presentation of the algorithm for checking the possibility of implementing a subset of tasks based on 
the GT L

Y  graph exceeds the scope of this work). Particular GT L
Y  graphs will also be created automatically based on 

the specified, for each functional resource, possible groups of technical resources, ensuring its disjunctive 
implementation. 

5. Conclusions 

The method presented in this paper allows to determine, at the design stage, such computer system configurations 
that will ensure the best, from the user's point of view, system performance in the event of failure of its technical 
resources. By assigning the best system configuration to each distinguished emergency situation, obtainable at a 
given state of technical resources, we get an automatic reconfiguration table (we abstract here from its physical 
implementation), based on which a properly programmed mechanism will auto-reconfigure the system. The 
development of such a table at the design stage of the system reduces the time of elaboration a new system 
configuration during its operation, almost to zero. This is particularly important in highly time-dependent systems 
where the response time to emergencies can have a decisive impact on the further usability of the system. 

The proposed method, according to the authors’ opinion, can be applied not only in relation to computer systems. 
It can be used to solve a number of problems from the class, let's call it, “tasks-resources” where specific resources 
are required to perform tasks, and which of these tasks can be performed depends on whether and which resources 
will be allocated. For example, this may be the issue of selecting projects for their portfolio. It can also be a matter 
of building a state security system, but as an objective function certainly it will be necessary to take into account the 
costs of performing system reconfiguration. 
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